First-Principles Materials Design of High-Performing Bulk Photovoltaics with the LiNbO3 Structure

نویسندگان

  • Steve M. Young
  • Fan Zheng
  • Andrew M. Rappe
چکیده

The bulk photovoltaic effect is a long-known but poorly understood phenomenon. Recently, however, the multiferroic bismuth ferrite has been observed to produce strong photovoltaic response to visible light, suggesting that the effect has been underexploited. Here we present three polar oxides in the LiNbO3 structure that we predict to have band gaps in the 1–2 eV range and very high bulk photovoltaic response: PbNiO3, Mg1=2Zn1=2PbO3, and LiBiO3. All three have band gaps determined by cations with ds electronic configurations, leading to conduction bands composed of cation s orbitals and O p orbitals. This both dramatically lowers the band gap and increases the bulk photovoltaic response by as much as an order of magnitude over previous materials, demonstrating the potential for high-performing bulk photovoltaics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

First-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface

First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...

متن کامل

Computational materials design of crystalline solids† †Electronic supplementary information (ESI) available: An extended reading list taken from a snapshot of the Mendeley Group on Materials Design available at https://www.mendeley.com/groups/8113991/materials-design. See DOI: 10.1039/c5cs00841g Click here for additional data file.

The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques...

متن کامل

Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear ...

متن کامل

Materials Design of Visible-Light Ferroelectric Photovoltaics from First Principles

Further improvement of the power conversion efficiencies of conventional perovskite ferroelectric oxides has been strongly impeded by their wide band gaps. Here, we use several band gap engineering strategies to design low band gap ferroelectric materials from first principles. We show that polarization rotation is useful for reducing the band gaps of strongly distorted perovskites. A variety o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015